/* Copyright (C) 2014 CZ.NIC, z.s.p.o. <knot-dns@labs.nic.cz> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. */ #include <stdarg.h> #include <string.h> #include <stdlib.h> #include <stdio.h> #include <arpa/inet.h> #include <sys/time.h> #include <contrib/cleanup.h> #include <ccan/isaac/isaac.h> #include <libknot/descriptor.h> #include <libknot/dname.h> #include <libknot/rrtype/rrsig.h> #include "lib/defines.h" #include "lib/utils.h" #include "lib/generic/array.h" #include "lib/nsrep.h" #include "lib/module.h" #include "lib/resolve.h" /* Always compile-in log symbols, even if disabled. */ #undef kr_verbose_status #undef kr_verbose_set #undef kr_log_verbose /* Logging & debugging */ bool kr_verbose_status = false; /** @internal CSPRNG context */ static isaac_ctx ISAAC; static bool isaac_seeded = false; #define SEED_SIZE 256 /* * Macros. */ #define strlen_safe(x) ((x) ? strlen(x) : 0) /** * @internal Convert 16bit unsigned to string, keeps leading spaces. * @note Always fills dst length = 5 * Credit: http://computer-programming-forum.com/46-asm/7aa4b50bce8dd985.htm */ static inline int u16tostr(uint8_t *dst, uint16_t num) { uint32_t tmp = num * (((1 << 28) / 10000) + 1) - (num / 4); for(size_t i = 0; i < 5; i++) { dst[i] = '0' + (char) (tmp >> 28); tmp = (tmp & 0x0fffffff) * 10; } return 5; } /* * Cleanup callbacks. */ bool kr_verbose_set(bool status) { #ifndef NOVERBOSELOG kr_verbose_status = status; #endif return kr_verbose_status; } void kr_log_verbose(const char *fmt, ...) { if (kr_verbose_status) { va_list args; va_start(args, fmt); vprintf(fmt, args); va_end(args); fflush(stdout); } } char* kr_strcatdup(unsigned n, ...) { /* Calculate total length */ size_t total_len = 0; va_list vl; va_start(vl, n); for (unsigned i = 0; i < n; ++i) { char *item = va_arg(vl, char *); total_len += strlen_safe(item); } va_end(vl); /* Allocate result and fill */ char *result = NULL; if (total_len > 0) { result = malloc(total_len + 1); } if (result) { char *stream = result; va_start(vl, n); for (unsigned i = 0; i < n; ++i) { char *item = va_arg(vl, char *); if (item) { size_t len = strlen(item); memcpy(stream, item, len + 1); stream += len; } } va_end(vl); } return result; } static int seed_file(FILE *fp, char *buf, size_t buflen) { if (!fp) { return -1; } /* Read whole buffer even if interrupted */ ssize_t readb = 0; while (!ferror(fp) && readb < buflen) { readb += fread(buf, 1, buflen - readb, fp); } return 0; } static int randseed(char *buf, size_t buflen) { /* This is adapted from Tor's crypto_seed_rng() */ static const char *filenames[] = { "/dev/srandom", "/dev/urandom", "/dev/random", NULL }; for (unsigned i = 0; filenames[i]; ++i) { auto_fclose FILE *fp = fopen(filenames[i], "r"); if (seed_file(fp, buf, buflen) == 0) { return 0; } } /* Seed from time, this is not going to be secure. */ struct timeval tv; gettimeofday(&tv, NULL); memcpy(buf, &tv, buflen < sizeof(tv) ? buflen : sizeof(tv)); return 0; } int kr_rand_reseed(void) { uint8_t seed[SEED_SIZE]; randseed((char *)seed, sizeof(seed)); isaac_reseed(&ISAAC, seed, sizeof(seed)); return kr_ok(); } unsigned kr_rand_uint(unsigned max) { if (!isaac_seeded) { kr_rand_reseed(); isaac_seeded = true; } return isaac_next_uint(&ISAAC, max); } int kr_memreserve(void *baton, char **mem, size_t elm_size, size_t want, size_t *have) { if (*have >= want) { return 0; } else { knot_mm_t *pool = baton; size_t next_size = array_next_count(want); void *mem_new = mm_alloc(pool, next_size * elm_size); if (mem_new != NULL) { memcpy(mem_new, *mem, (*have)*(elm_size)); mm_free(pool, *mem); *mem = mem_new; *have = next_size; return 0; } } return -1; } int kr_pkt_recycle(knot_pkt_t *pkt) { pkt->rrset_count = 0; pkt->size = KNOT_WIRE_HEADER_SIZE; pkt->current = KNOT_ANSWER; knot_wire_set_qdcount(pkt->wire, 0); knot_wire_set_ancount(pkt->wire, 0); knot_wire_set_nscount(pkt->wire, 0); knot_wire_set_arcount(pkt->wire, 0); memset(pkt->sections, 0, sizeof(pkt->sections)); knot_pkt_begin(pkt, KNOT_ANSWER); return knot_pkt_parse_question(pkt); } int kr_pkt_clear_payload(knot_pkt_t *pkt) { pkt->rrset_count = 0; pkt->size = KNOT_WIRE_HEADER_SIZE + pkt->qname_size + 2 * sizeof(uint16_t); /* QTYPE + QCLASS */ pkt->parsed = KNOT_WIRE_HEADER_SIZE; pkt->current = KNOT_ANSWER; knot_wire_set_ancount(pkt->wire, 0); knot_wire_set_nscount(pkt->wire, 0); knot_wire_set_arcount(pkt->wire, 0); memset(&pkt->sections[KNOT_ANSWER], 0, sizeof(knot_pktsection_t) * (KNOT_PKT_SECTIONS - (KNOT_ANSWER + 1))); knot_pkt_begin(pkt, KNOT_ANSWER); return knot_pkt_parse_question(pkt); } int kr_pkt_put(knot_pkt_t *pkt, const knot_dname_t *name, uint32_t ttl, uint16_t rclass, uint16_t rtype, const uint8_t *rdata, uint16_t rdlen) { if (!pkt || !name) { return kr_error(EINVAL); } /* Create empty RR */ knot_rrset_t rr; knot_rrset_init(&rr, knot_dname_copy(name, &pkt->mm), rtype, rclass); /* Create RDATA * @warning _NOT_ thread safe. */ static knot_rdata_t rdata_arr[RDATA_ARR_MAX]; knot_rdata_init(rdata_arr, rdlen, rdata, ttl); knot_rdataset_add(&rr.rrs, rdata_arr, &pkt->mm); /* Append RR */ return knot_pkt_put(pkt, 0, &rr, KNOT_PF_FREE); } const char *kr_inaddr(const struct sockaddr *addr) { if (!addr) { return NULL; } switch (addr->sa_family) { case AF_INET: return (const char *)&(((const struct sockaddr_in *)addr)->sin_addr); case AF_INET6: return (const char *)&(((const struct sockaddr_in6 *)addr)->sin6_addr); default: return NULL; } } int kr_inaddr_family(const struct sockaddr *addr) { if (!addr) return AF_UNSPEC; return addr->sa_family; } int kr_inaddr_len(const struct sockaddr *addr) { if (!addr) { return kr_error(EINVAL); } return kr_family_len(addr->sa_family); } int kr_straddr_family(const char *addr) { if (!addr) { return kr_error(EINVAL); } if (strchr(addr, ':')) { return AF_INET6; } return AF_INET; } int kr_family_len(int family) { switch (family) { case AF_INET: return sizeof(struct in_addr); case AF_INET6: return sizeof(struct in6_addr); default: return kr_error(EINVAL); } } int kr_straddr_subnet(void *dst, const char *addr) { if (!dst || !addr) { return kr_error(EINVAL); } /* Parse subnet */ int bit_len = 0; int family = kr_straddr_family(addr); auto_free char *addr_str = strdup(addr); char *subnet = strchr(addr_str, '/'); if (subnet) { *subnet = '\0'; subnet += 1; bit_len = atoi(subnet); /* Check client subnet length */ const int max_len = (family == AF_INET6) ? 128 : 32; if (bit_len < 0 || bit_len > max_len) { return kr_error(ERANGE); } } else { /* No subnet, use maximal subnet length. */ bit_len = (family == AF_INET6) ? 128 : 32; } /* Parse address */ int ret = inet_pton(family, addr_str, dst); if (ret < 0) { return kr_error(EILSEQ); } return bit_len; } int kr_bitcmp(const char *a, const char *b, int bits) { if (!a || !b || bits == 0) { return kr_error(ENOMEM); } /* Compare part byte-divisible part. */ const size_t chunk = bits / 8; int ret = memcmp(a, b, chunk); if (ret != 0) { return ret; } a += chunk; b += chunk; bits -= chunk * 8; /* Compare last partial byte address block. */ if (bits > 0) { const size_t shift = (8 - bits); ret = ((uint8_t)(*a >> shift) - (uint8_t)(*b >> shift)); } return ret; } int kr_rrkey(char *key, const knot_dname_t *owner, uint16_t type, uint8_t rank) { if (!key || !owner) { return kr_error(EINVAL); } key[0] = (rank << 2) | 0x01; /* Must be non-zero */ uint8_t *key_buf = (uint8_t *)key + 1; int ret = knot_dname_to_wire(key_buf, owner, KNOT_DNAME_MAXLEN); if (ret <= 0) { return ret; } knot_dname_to_lower(key_buf); key_buf += ret - 1; /* Must convert to string, as the key must not contain 0x00 */ ret = u16tostr(key_buf, type); key_buf[ret] = '\0'; return (char *)&key_buf[ret] - key; } int kr_rrmap_add(map_t *stash, const knot_rrset_t *rr, uint8_t rank, knot_mm_t *pool) { if (!stash || !rr) { return kr_error(EINVAL); } /* Stash key = {[1] flags, [1-255] owner, [5] type, [1] \x00 } */ char key[KR_RRKEY_LEN]; uint8_t extra_flags = 0; uint16_t rrtype = rr->type; /* Stash RRSIGs in a special cache, flag them and set type to its covering RR. * This way it the stash won't merge RRSIGs together. */ if (rr->type == KNOT_RRTYPE_RRSIG) { rrtype = knot_rrsig_type_covered(&rr->rrs, 0); extra_flags |= KEY_FLAG_RRSIG; } int ret = kr_rrkey(key, rr->owner, rrtype, rank); if (ret <= 0) { return kr_error(EILSEQ); } key[0] |= extra_flags; /* Check if already exists */ knot_rrset_t *stashed = map_get(stash, key); if (!stashed) { stashed = knot_rrset_copy(rr, pool); if (!stashed) { return kr_error(ENOMEM); } return map_set(stash, key, stashed); } /* Merge rdataset */ return knot_rdataset_merge(&stashed->rrs, &rr->rrs, pool); } int kr_rrarray_add(rr_array_t *array, const knot_rrset_t *rr, knot_mm_t *pool) { int ret = array_reserve_mm(*array, array->len + 1, kr_memreserve, pool); if (ret != 0) { return kr_error(ENOMEM); } knot_rrset_t *copy = knot_rrset_copy(rr, pool); if (!copy) { return kr_error(ENOMEM); } array_push(*array, copy); return kr_ok(); } static char *callprop(struct kr_module *module, const char *prop, const char *input, void *env) { if (!module || !prop) { return NULL; } for (struct kr_prop *p = module->props; p && p->name; ++p) { if (p->cb != NULL && strcmp(p->name, prop) == 0) { return p->cb(env, module, input); } } return NULL; } char *kr_module_call(struct kr_context *ctx, const char *module, const char *prop, const char *input) { if (!ctx || !ctx->modules || !module || !prop) { return NULL; } module_array_t *mod_list = ctx->modules; for (size_t i = 0; i < mod_list->len; ++i) { struct kr_module *mod = mod_list->at[i]; if (strcmp(mod->name, module) == 0) { return callprop(mod, prop, input, ctx); } } return NULL; }