Newer
Older
/*
* This file is part of hat-trie.
*
* Copyright (c) 2011 by Daniel C. Jones <dcjones@cs.washington.edu>
*
*/
#include <config.h>
#include <stdint.h>
#include <assert.h>
#include <string.h>
#include "common/hattrie/hat-trie.h"
#include "common/hattrie/ahtable.h"
/* number of child nodes for used alphabet */
#define NODE_CHILDS (TRIE_MAXCHAR+1)
/* initial nodestack size */
#define NODESTACK_INIT 512
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
static const uint8_t NODE_TYPE_TRIE = 0x1;
static const uint8_t NODE_TYPE_PURE_BUCKET = 0x2;
static const uint8_t NODE_TYPE_HYBRID_BUCKET = 0x4;
static const uint8_t NODE_HAS_VAL = 0x8;
struct trie_node_t_;
/* Node's may be trie nodes or buckets. This union allows us to keep
* non-specific pointer. */
typedef union node_ptr_
{
ahtable_t* b;
struct trie_node_t_* t;
uint8_t* flag;
} node_ptr;
typedef struct trie_node_t_
{
uint8_t flag;
/* the value for the key that is consumed on a trie node */
value_t val;
/* Map a character to either a trie_node_t or a ahtable_t. The first byte
* must be examined to determine which. */
node_ptr xs[NODE_CHILDS];
} trie_node_t;
struct hattrie_t_
{
node_ptr root; // root node
size_t m; // number of stored keys
unsigned bsize; // bucket size
};
/* Create an empty trie node. */
static trie_node_t* alloc_empty_node(hattrie_t* T)
{
trie_node_t* node = T->mm.alloc(T->mm.ctx, sizeof(trie_node_t));
node->flag = NODE_TYPE_TRIE;
node->val = 0;
memset(node->xs, 0, sizeof(node_ptr) * NODE_CHILDS);
return node;
}
/* Create a new trie node with all pointer pointing to the given child (which
* can be NULL). */
static trie_node_t* alloc_trie_node(hattrie_t* T, node_ptr child)
{
trie_node_t* node = T->mm.alloc(T->mm.ctx, sizeof(trie_node_t));
node->flag = NODE_TYPE_TRIE;
node->val = 0;
size_t i;
for (i = 0; i < NODE_CHILDS; ++i) node->xs[i] = child;
return node;
}
/* iterate trie nodes until string is consumed or bucket is found */
static node_ptr hattrie_consume_ns(node_ptr **s, size_t *sp, size_t slen,
const char **k, size_t *l, unsigned brk)
{
node_ptr *bs = *s;
node_ptr node = bs[*sp].t->xs[(unsigned char) **k];
while (node.flag && *node.flag & NODE_TYPE_TRIE && *l > brk) {
++*k;
--*l;
/* build node stack if slen > 0 */
if (slen > 0) {
if (*sp == slen - 1) {
/* switch pointers if allocating from base
* this is a bit ugly, but needed to avoid memory allocation
* most of the time
*/
slen *= 2;
if (bs == *s) { /* points to original stack mem */
bs = malloc(slen * sizeof(node_ptr));
memcpy(bs, *s, (slen/2) * sizeof(node_ptr));
} else { /* points to heap memory already */
bs = realloc(bs, slen * sizeof(node_ptr));
}
/* update parent pointer on resize */
*s = bs;
}
/* increment stack pointer */
++*sp;
}
bs[*sp] = node;
node = node.t->xs[(unsigned char) **k];
}
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/* stack top is always parent node */
assert(*bs[*sp].flag & NODE_TYPE_TRIE);
return node;
}
static inline node_ptr hattrie_consume(node_ptr *parent, const char **k,
size_t *l, unsigned brk)
{
size_t sp = 0;
return hattrie_consume_ns(&parent, &sp, 0, k, l, brk);
}
/* use node value and return pointer to it */
static inline value_t* hattrie_useval(hattrie_t *T, node_ptr n)
{
if (!(n.t->flag & NODE_HAS_VAL)) {
n.t->flag |= NODE_HAS_VAL;
++T->m;
}
return &n.t->val;
}
/* clear node value if exists */
static inline int hattrie_clrval(hattrie_t *T, node_ptr n)
{
if (n.t->flag & NODE_HAS_VAL) {
n.t->flag &= ~NODE_HAS_VAL;
n.t->val = 0;
--T->m;
return 0;
}
return -1;
}
/* find rightmost non-empty node */
static value_t* hattrie_find_rightmost(node_ptr node)
{
/* iterate children from right */
value_t *ret = NULL;
if (*node.flag & NODE_TYPE_TRIE) {
for (int i = TRIE_MAXCHAR; i > -1; --i) {
/* skip repeated pointers to hybrid bucket */
if (i < TRIE_MAXCHAR && node.t->xs[i].t == node.t->xs[i + 1].t)
continue;
/* nest if trie */
ret = hattrie_find_rightmost(node.t->xs[i]);
if (ret) {
return ret;
}
}
/* use trie node value if no children found */
if (node.t->flag & NODE_HAS_VAL) {
return &node.t->val;
}
/* no non-empty children? */
return NULL;
}
/* node is ahtable */
if (node.b->m == 0) {
return NULL;
}
/* return rightmost value */
assert(node.b->index);
return ahtable_indexval(node.b, node.b->m - 1);
}
/* find node in trie and keep node stack (if slen > 0) */
static node_ptr hattrie_find_ns(node_ptr **s, size_t *sp, size_t slen,
const char **key, size_t *len)
{
assert(*(*s)[*sp].flag & NODE_TYPE_TRIE);
if (*len == 0) return (*s)[*sp]; /* parent, as sp == 0 */
node_ptr node = hattrie_consume_ns(s, sp, slen, key, len, 1);
/* using pure trie and couldn't find the key, return stack top */
if (node.flag == NULL) {
node = (*s)[*sp];
}
/* if the trie node consumes value, use it */
if (*node.flag & NODE_TYPE_TRIE) {
if (!(node.t->flag & NODE_HAS_VAL)) {
node.flag = NULL;
}
return node;
}
/* pure bucket holds only key suffixes, skip current char */
if (*node.flag & NODE_TYPE_PURE_BUCKET) {
--*len;
}
/* do not scan bucket, it's not needed for this operation */
return node;
}
/* find node in trie */
static inline node_ptr hattrie_find(node_ptr *parent, const char **key, size_t *len)
{
size_t sp = 0;
return hattrie_find_ns(&parent, &sp, 0, key, len);
}
static inline value_t hattrie_setval(value_t v) {
return v;
}
/* initialize root node */
static void hattrie_initroot(hattrie_t *T)
{
node_ptr node;
if (T->bsize > 0) {
node.b = ahtable_create();
node.b->flag = NODE_TYPE_HYBRID_BUCKET;
node.b->c0 = 0x00;
node.b->c1 = TRIE_MAXCHAR;
T->root.t = alloc_trie_node(T, node);
} else {
T->root.t = alloc_empty_node(T);
}
}
/* Free hat-trie nodes recursively. */
static void hattrie_free_node(node_ptr node, mm_free_t free_cb)
{
if (*node.flag & NODE_TYPE_TRIE) {
size_t i;
for (i = 0; i < NODE_CHILDS; ++i) {
if (i > 0 && node.t->xs[i].t == node.t->xs[i - 1].t)
/* XXX: recursion might not be the best choice here. It is possible
* to build a very deep trie. */
if (node.t->xs[i].t)
hattrie_free_node(node.t->xs[i], free_cb);
}
if (free_cb)
free_cb(node.t);
}
else {
ahtable_free(node.b);
}
}
/* Initialize hat-trie. */
static void hattrie_init(hattrie_t * T, unsigned bucket_size)
{
T->bsize = bucket_size;
hattrie_initroot(T);
}
/* Deinitialize hat-trie. */
static void hattrie_deinit(hattrie_t * T)
{
if (T->bsize > 0 || T->mm.free)
hattrie_free_node(T->root, T->mm.free);
}
hattrie_t* hattrie_create()
{
mm_ctx_t mm;
mm_ctx_init(&mm);
return hattrie_create_n(TRIE_BUCKET_SIZE, &mm);
void hattrie_free(hattrie_t* T)
{
if (T->mm.free)
T->mm.free(T);
}
void hattrie_clear(hattrie_t* T)
{
if (T == NULL) {
return;
}
hattrie_deinit(T);
hattrie_init(T, T->bsize);
hattrie_t* hattrie_dup(const hattrie_t* T, value_t (*nval)(value_t))
{
hattrie_t *N = hattrie_create_n(T->bsize, &T->mm);
/* assignment */
if (!nval) nval = hattrie_setval;
/*! \todo could be probably implemented faster */
size_t l = 0;
const char *k = 0;
hattrie_iter_t *i = hattrie_iter_begin(T, false);
while (!hattrie_iter_finished(i)) {
k = hattrie_iter_key(i, &l);
*hattrie_get(N, k, l) = nval(*hattrie_iter_val(i));
hattrie_iter_next(i);
}
hattrie_iter_free(i);
return N;
}
size_t hattrie_weight (hattrie_t* T)
{
return T->m;
}
hattrie_t* hattrie_create_n(unsigned bucket_size, const mm_ctx_t *mm)
{
hattrie_t* T = mm->alloc(mm->ctx, sizeof(hattrie_t));
memcpy(&T->mm, mm, sizeof(mm_ctx_t));
hattrie_init(T, bucket_size);
return T;
}
static void node_build_index(node_ptr node)
{
/* build index on all ahtable nodes */
if (*node.flag & NODE_TYPE_TRIE) {
size_t i;
for (i = 0; i < NODE_CHILDS; ++i) {
if (i > 0 && node.t->xs[i].t == node.t->xs[i - 1].t) continue;
if (node.t->xs[i].t) node_build_index(node.t->xs[i]);
}
}
else {
ahtable_build_index(node.b);
}
}
void hattrie_build_index(hattrie_t *T)
{
node_build_index(T->root);
}
static void node_apply(node_ptr node, void (*f)(value_t*,void*), void* d)
{
if (*node.flag & NODE_TYPE_TRIE) {
size_t i;
for (i = 0; i < NODE_CHILDS; ++i) {
if (i > 0 && node.t->xs[i].t == node.t->xs[i - 1].t) continue;
if (node.t->xs[i].t) node_apply(node.t->xs[i], f, d);
if (*node.flag & NODE_HAS_VAL) {
}
}
}
else {
ahtable_iter_t i;
ahtable_iter_begin(node.b, &i, false);
while (!ahtable_iter_finished(&i)) {
f(ahtable_iter_val(&i), d);
ahtable_iter_next(&i);
}
ahtable_iter_free(&i);
}
}
static void node_apply_ahtable(node_ptr node, void (*f)(void*,void*), void* d)
{
if (*node.flag & NODE_TYPE_TRIE) {
size_t i;
for (i = 0; i < NODE_CHILDS; ++i) {
if (i > 0 && node.t->xs[i].t == node.t->xs[i - 1].t) continue;
if (node.t->xs[i].t) node_apply_ahtable(node.t->xs[i], f, d);
}
}
else {
f(node.b, d);
}
}
void hattrie_apply_rev(hattrie_t* T, void (*f)(value_t*,void*), void* d)
{
node_apply(T->root, f, d);
}
void hattrie_apply_rev_ahtable(hattrie_t* T, void (*f)(void*,void*), void* d)
{
node_apply_ahtable(T->root, f, d);
}
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
int hattrie_split_mid(node_ptr node, unsigned *left_m, unsigned *right_m)
{
/* count the number of occourances of every leading character */
unsigned int cs[NODE_CHILDS]; // occurance count for leading chars
memset(cs, 0, NODE_CHILDS * sizeof(unsigned int));
size_t len;
const char* key;
/*! \todo expensive, maybe some heuristics or precalc would be better */
ahtable_iter_t i;
ahtable_iter_begin(node.b, &i, false);
while (!ahtable_iter_finished(&i)) {
key = ahtable_iter_key(&i, &len);
assert(len > 0);
cs[(unsigned char) key[0]] += 1;
ahtable_iter_next(&i);
}
ahtable_iter_free(&i);
/* choose a split point */
unsigned int all_m;
unsigned char j = node.b->c0;
all_m = ahtable_size(node.b);
*left_m = cs[j];
*right_m = all_m - *left_m;
int d;
while (j + 1 < node.b->c1) {
d = abs((int) (*left_m + cs[j + 1]) - (int) (*right_m - cs[j + 1]));
if (d <= abs(*left_m - *right_m) && *left_m + cs[j + 1] < all_m) {
j += 1;
*left_m += cs[j];
*right_m -= cs[j];
}
else break;
}
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
return j;
}
static void hattrie_split_fill(node_ptr src, node_ptr left, node_ptr right, uint8_t split)
{
/* right should be most of the time hybrid */
/* keep or distribute keys to the new right node */
value_t* u;
const char* key;
size_t len;
ahtable_iter_t i;
ahtable_iter_begin(src.b, &i, false);
while (!ahtable_iter_finished(&i)) {
key = ahtable_iter_key(&i, &len);
u = ahtable_iter_val(&i);
assert(len > 0);
/* first char > split_point, move to the right */
if ((unsigned char) key[0] > split) {
if (src.b != right.b) {
/* insert to right (new bucket) */
if (*right.flag & NODE_TYPE_PURE_BUCKET) {
ahtable_insert(right.b, key + 1, len - 1, *u);
}
else {
ahtable_insert(right.b, key, len, *u);
}
/* transferred to right (from reused) */
if (src.b == left.b) {
ahtable_iter_del(&i);
continue;
}
} /* keep the node in right */
} else {
if (src.b != left.b) {
/* insert to left (new bucket) */
if (*left.flag & NODE_TYPE_PURE_BUCKET) {
ahtable_insert(left.b, key + 1, len - 1, *u);
}
else {
ahtable_insert(left.b, key, len, *u);
}
/* transferred to left (from reused) */
if (src.b == right.b) {
ahtable_iter_del(&i);
continue;
}
} /* keep the node in left */
}
ahtable_iter_next(&i);
}
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
ahtable_iter_free(&i);
}
/* Split hybrid node - this is similar operation to burst. */
static void hattrie_split_h(node_ptr parent, node_ptr node)
{
/* Find split point. */
unsigned left_m, right_m;
unsigned char j = hattrie_split_mid(node, &left_m, &right_m);
/* now split into two node cooresponding to ranges [0, j] and
* [j + 1, TRIE_MAXCHAR], respectively. */
/* create new left and right nodes
* one node may reuse existing if it keeps hybrid flag
* hybrid -> pure always needs a new table
*/
unsigned char c0 = node.b->c0, c1 = node.b->c1;
node_ptr left, right;
if (j + 1 == c1) { /* right will be pure */
right.b = ahtable_create();
if (j == c0) { /* left will be pure as well */
left.b = ahtable_create();
} else { /* left will be hybrid */
left.b = node.b;
}
} else { /* right will be hybrid */
right.b = node.b;
left.b = ahtable_create();
}
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
/* setup created nodes */
left.b->c0 = c0;
left.b->c1 = j;
left.b->flag = c0 == j ? NODE_TYPE_PURE_BUCKET : NODE_TYPE_HYBRID_BUCKET; // need to force it
right.b->c0 = j + 1;
right.b->c1 = c1;
right.b->flag = right.b->c0 == right.b->c1 ?
NODE_TYPE_PURE_BUCKET : NODE_TYPE_HYBRID_BUCKET;
/* update the parent's pointer */
unsigned int c;
for (c = c0; c <= j; ++c) parent.t->xs[c] = left;
for (; c <= c1; ++c) parent.t->xs[c] = right;
/* fill new tables */
hattrie_split_fill(node, left, right, j);
if (node.b != left.b && node.b != right.b) {
ahtable_free(node.b);
}
}
/* Perform one split operation on the given node with the given parent.
*/
static void hattrie_split(hattrie_t* T, node_ptr parent, node_ptr node)
{
/* only buckets may be split */
assert(*node.flag & NODE_TYPE_PURE_BUCKET ||
*node.flag & NODE_TYPE_HYBRID_BUCKET);
assert(*parent.flag & NODE_TYPE_TRIE);
if (*node.flag & NODE_TYPE_PURE_BUCKET) {
/* turn the pure bucket into a hybrid bucket */
parent.t->xs[node.b->c0].t = alloc_trie_node(T, node);
/* if the bucket had an empty key, move it to the new trie node */
value_t* val = ahtable_tryget(node.b, NULL, 0);
if (val) {
parent.t->xs[node.b->c0].t->val = *val;
parent.t->xs[node.b->c0].t->flag |= NODE_HAS_VAL;
*val = 0;
ahtable_del(node.b, NULL, 0);
}
node.b->c0 = 0x00;
node.b->c1 = TRIE_MAXCHAR;
node.b->flag = NODE_TYPE_HYBRID_BUCKET;
return;
}
/* This is a hybrid bucket. Perform a proper split. */
hattrie_split_h(parent, node);
}
value_t* hattrie_get(hattrie_t* T, const char* key, size_t len)
{
node_ptr parent = T->root;
assert(*parent.flag & NODE_TYPE_TRIE);
if (len == 0) return &parent.t->val;
/* consume all trie nodes, now parent must be trie and child anything */
node_ptr node = hattrie_consume(&parent, &key, &len, 0);
assert(*parent.flag & NODE_TYPE_TRIE);
/* key wasn't consumed and using pure tries */
if (T->bsize == 0) {
node.t = parent.t;
while (len > 0) {
node.t->xs[(unsigned char) *key].t = alloc_empty_node(T);
node = node.t->xs[(unsigned char) *key];
++key;
--len;
}
return hattrie_useval(T, node);
}
/* if the key has been consumed on a trie node, use its value */
if (len == 0) {
if (*node.flag & NODE_TYPE_TRIE) {
return hattrie_useval(T, node);
}
else if (*node.flag & NODE_TYPE_HYBRID_BUCKET) {
return hattrie_useval(T, parent);
}
}
/* preemptively split the bucket if it is full */
while (ahtable_size(node.b) >= T->bsize) {
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
hattrie_split(T, parent, node);
/* after the split, the node pointer is invalidated, so we search from
* the parent again. */
node = hattrie_consume(&parent, &key, &len, 0);
/* if the key has been consumed on a trie node, use its value */
if (len == 0) {
if (*node.flag & NODE_TYPE_TRIE) {
return hattrie_useval(T, node);
}
else if (*node.flag & NODE_TYPE_HYBRID_BUCKET) {
return hattrie_useval(T, parent);
}
}
}
assert(*node.flag & NODE_TYPE_PURE_BUCKET || *node.flag & NODE_TYPE_HYBRID_BUCKET);
assert(len > 0);
size_t m_old = node.b->m;
value_t* val;
if (*node.flag & NODE_TYPE_PURE_BUCKET) {
val = ahtable_get(node.b, key + 1, len - 1);
}
else {
val = ahtable_get(node.b, key, len);
}
T->m += (node.b->m - m_old);
return val;
}
value_t* hattrie_tryget(hattrie_t* T, const char* key, size_t len)
{
/* find node for given key */
node_ptr parent = T->root;
node_ptr node = hattrie_find(&parent, &key, &len);
if (node.flag == NULL) {
return NULL;
}
/* if the trie node consumes value, use it */
if (*node.flag & NODE_TYPE_TRIE) {
return &node.t->val;
}
return ahtable_tryget(node.b, key, len);
}
static value_t* hattrie_walk(node_ptr* s, size_t sp,
const char* key, value_t* (*f)(node_ptr))
{
value_t *r = NULL;
while (r == NULL) {
/* if not found prev in table, it should be
* the rightmost of the nodes left of the current
*/
node_ptr visited = s[sp].t->xs[(unsigned char)*key];
for (int i = *key - 1; i > -1; --i) {
if (s[sp].t->xs[i].flag == visited.flag)
continue; /* skip pointers to visited container */
r = f(s[sp].t->xs[i]);
if (r) {
return r;
}
}
/* use trie node value if possible */
if (s[sp].t->flag & NODE_HAS_VAL) {
return &s[sp].t->val;
}
/* consumed whole stack */
if (sp == 0) {
break;
}
/* pop stack */
--key;
--sp;
}
return NULL;
}
int hattrie_find_leq (hattrie_t* T, const char* key, size_t len, value_t** dst)
{
/* create node stack for traceback */
size_t sp = 0;
node_ptr bs[NODESTACK_INIT]; /* base stack (will be enough mostly) */
node_ptr *ns = bs; /* generic ptr, could point to new mem */
ns[sp] = T->root;
/* find node for given key */
int ret = 1; /* no node on the left matches */
node_ptr node = hattrie_find_ns(&ns, &sp, NODESTACK_INIT, &key, &len);
if (node.flag == NULL) {
*dst = hattrie_walk(ns, sp, key, hattrie_find_rightmost);
if (ns != bs) free(ns);
if (*dst) {
return -1; /* found previous */
}
return 1; /* no previous key found */
}
/* assign value from trie or find in table */
if (*node.flag & NODE_TYPE_TRIE) {
*dst = &node.t->val;
ret = 0; /* found exact match */
} else {
*dst = ahtable_tryget(node.b, key, len);
if (*dst) {
ret = 0; /* found exact match */
} else { /* look for previous in ahtable */
ret = ahtable_find_leq(node.b, key, len, dst);
}
}
/* return if found equal or left in ahtable */
if (*dst == 0) {
*dst = hattrie_walk(ns, sp, key, hattrie_find_rightmost);
if (*dst) {
ret = -1; /* found previous */
} else {
ret = 1; /* no previous key found */
}
}
if (ns != bs) free(ns);
return ret;
}
int hattrie_find_lpr (hattrie_t* T, const char* key, size_t len, value_t** dst)
{
/* create node stack for traceback */
int ret = -1;
size_t sp = 0;
node_ptr bs[NODESTACK_INIT]; /* base stack (will be enough mostly) */
node_ptr *ns = bs; /* generic ptr, could point to new mem */
ns[sp] = T->root;
*dst = NULL;
/* consume trie nodes for key (thus building prefix chain) */
node_ptr node = hattrie_find_ns(&ns, &sp, NODESTACK_INIT, &key, &len);
if (node.flag == NULL) {
if (sp == 0) { /* empty trie, no prefix match */
if (ns != bs) free(ns);
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
node = ns[--sp]; /* dead end, pop node */
}
/* search for suffix in current node */
size_t suffix = len; /* suffix length */
if (*node.flag & NODE_TYPE_TRIE) {
*dst = &node.t->val; /* use current trie node value */
} else {
while (*dst == NULL) { /* find remainder in current ahtable */
*dst = ahtable_tryget(node.b, key, suffix);
if (suffix == 0)
break;
--suffix;
}
}
/* not in current node, need to traceback node stack */
while (*dst == NULL) {
node = ns[sp]; /* parent node, always a trie node type */
if (*node.flag & NODE_HAS_VAL)
*dst = &node.t->val;
if (sp == 0)
break;
--sp;
}
if (*dst) { /* prefix found? */
ret = 0;
}
if (ns != bs) free(ns);
return ret;
}
int hattrie_del(hattrie_t* T, const char* key, size_t len)
{
node_ptr parent = T->root;
assert(*parent.flag & NODE_TYPE_TRIE);
/* find node for deletion */
node_ptr node = hattrie_find(&parent, &key, &len);
if (node.flag == NULL) {
return -1;
}
/* if consumed on a trie node, clear the value */
if (*node.flag & NODE_TYPE_TRIE) {
return hattrie_clrval(T, node);
}
/* remove from bucket */
size_t m_old = ahtable_size(node.b);
int ret = ahtable_del(node.b, key, len);
T->m -= (m_old - ahtable_size(node.b));
/* merge empty buckets */
/*! \todo */
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
return ret;
}
/* plan for iteration:
* This is tricky, as we have no parent pointers currently, and I would like to
* avoid adding them. That means maintaining a stack
*
*/
typedef struct hattrie_node_stack_t_
{
unsigned char c;
size_t level;
node_ptr node;
struct hattrie_node_stack_t_* next;
} hattrie_node_stack_t;
struct hattrie_iter_t_
{
char* key;
size_t keysize; // space reserved for the key
size_t level;
/* keep track of keys stored in trie nodes */
bool has_nil_key;
value_t nil_val;
const hattrie_t* T;
bool sorted;
ahtable_iter_t* i;
hattrie_node_stack_t* stack;
};
static void hattrie_iter_pushchar(hattrie_iter_t* i, size_t level, char c)
{
if (i->keysize < level) {
i->keysize *= 2;
i->key = realloc(i->key, i->keysize * sizeof(char));
}
if (level > 0) {
i->key[level - 1] = c;
}
i->level = level;
}
static void hattrie_iter_nextnode(hattrie_iter_t* i)
{
if (i->stack == NULL) return;
/* pop the stack */
node_ptr node;
hattrie_node_stack_t* next;
unsigned char c;
size_t level;
node = i->stack->node;
next = i->stack->next;
c = i->stack->c;
level = i->stack->level;
free(i->stack);
i->stack = next;
if (*node.flag & NODE_TYPE_TRIE) {
hattrie_iter_pushchar(i, level, c);
if(node.t->flag & NODE_HAS_VAL) {
i->has_nil_key = true;
i->nil_val = node.t->val;
}
/* push all child nodes from right to left */
int j;
for (j = TRIE_MAXCHAR; j >= 0; --j) {
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* skip repeated pointers to hybrid bucket */
if (j < TRIE_MAXCHAR && node.t->xs[j].t == node.t->xs[j + 1].t) continue;
// push stack
next = i->stack;
i->stack = malloc(sizeof(hattrie_node_stack_t));
i->stack->node = node.t->xs[j];
i->stack->next = next;
i->stack->level = level + 1;
i->stack->c = (unsigned char) j;
}
}
else {
if (*node.flag & NODE_TYPE_PURE_BUCKET) {
hattrie_iter_pushchar(i, level, c);
}
else {
i->level = level - 1;
}
i->i = malloc(sizeof(ahtable_iter_t));
ahtable_iter_begin(node.b, i->i, i->sorted);
}
}
hattrie_iter_t* hattrie_iter_begin(const hattrie_t* T, bool sorted)
{
hattrie_iter_t* i = malloc(sizeof(hattrie_iter_t));
i->T = T;
i->sorted = sorted;
i->i = NULL;
i->keysize = 16;
i->key = malloc(i->keysize * sizeof(char));
i->level = 0;
i->has_nil_key = false;
i->nil_val = 0;
i->stack = malloc(sizeof(hattrie_node_stack_t));
i->stack->next = NULL;
i->stack->node = T->root;
i->stack->c = '\0';
i->stack->level = 0;
while (((i->i == NULL || ahtable_iter_finished(i->i)) && !i->has_nil_key) &&
i->stack != NULL ) {
ahtable_iter_free(i->i);
free(i->i);
i->i = NULL;
hattrie_iter_nextnode(i);
}
if (i->i != NULL && ahtable_iter_finished(i->i)) {
ahtable_iter_free(i->i);
free(i->i);
i->i = NULL;
}
return i;
}
void hattrie_iter_next(hattrie_iter_t* i)
{
if (hattrie_iter_finished(i)) return;
if (i->i != NULL && !ahtable_iter_finished(i->i)) {
ahtable_iter_next(i->i);
}
else if (i->has_nil_key) {
i->has_nil_key = false;
i->nil_val = 0;
hattrie_iter_nextnode(i);
}
while (((i->i == NULL || ahtable_iter_finished(i->i)) && !i->has_nil_key) &&
i->stack != NULL ) {
ahtable_iter_free(i->i);
free(i->i);
i->i = NULL;
hattrie_iter_nextnode(i);