Newer
Older
/* Copyright (C) 2014 CZ.NIC, z.s.p.o. <knot-dns@labs.nic.cz>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#include <assert.h>
#include <arpa/inet.h>
#include <libknot/rrtype/rdname.h>
#include <libknot/descriptor.h>
#include <ucw/mempool.h>
#include "lib/resolve.h"
#include "lib/layer/iterate.h"
#include "lib/cookies/control.h"
#include "lib/cookies/helper.h"
#include "lib/cookies/nonce.h"
#else /* Define compatibility macros */
#define KNOT_EDNS_OPTION_COOKIE 10
#endif /* defined(ENABLE_COOKIES) */
#define DEBUG_MSG(qry, fmt...) QRDEBUG((qry), "resl", fmt)
/**
* @internal Defer execution of current query.
* The current layer state and input will be pushed to a stack and resumed on next iteration.
*/
static int consume_yield(knot_layer_t *ctx, knot_pkt_t *pkt)
{
struct kr_request *req = ctx->data;
knot_pkt_t *pkt_copy = knot_pkt_new(NULL, pkt->size, &req->pool);
struct kr_layer_pickle *pickle = mm_alloc(&req->pool, sizeof(*pickle));
if (pickle && pkt_copy && knot_pkt_copy(pkt_copy, pkt) == 0) {
struct kr_query *qry = req->current_query;
pickle->api = ctx->api;
pickle->state = ctx->state;
pickle->pkt = pkt_copy;
pickle->next = qry->deferred;
qry->deferred = pickle;
return kr_ok();
}
return kr_error(ENOMEM);
}
static int begin_yield(knot_layer_t *ctx, void *module) { return kr_ok(); }
static int reset_yield(knot_layer_t *ctx) { return kr_ok(); }
static int finish_yield(knot_layer_t *ctx) { return kr_ok(); }
static int produce_yield(knot_layer_t *ctx, knot_pkt_t *pkt) { return kr_ok(); }
/** @internal Macro for iterating module layers. */
#define RESUME_LAYERS(from, req, qry, func, ...) \
(req)->current_query = (qry); \
for (size_t i = (from); i < (req)->ctx->modules->len; ++i) { \
struct kr_module *mod = (req)->ctx->modules->at[i]; \
if (mod->layer) { \
struct knot_layer layer = {.state = (req)->state, .api = mod->layer(mod), .data = (req)}; \
if (layer.api && layer.api->func) { \
(req)->state = layer.api->func(&layer, ##__VA_ARGS__); \
if ((req)->state == KNOT_STATE_YIELD) { \
func ## _yield(&layer, ##__VA_ARGS__); \
(req)->current_query = NULL
/** @internal Macro for starting module iteration. */
#define ITERATE_LAYERS(req, qry, func, ...) RESUME_LAYERS(0, req, qry, func, ##__VA_ARGS__)
/** @internal Find layer id matching API. */
static inline size_t layer_id(struct kr_request *req, const struct knot_layer_api *api) {
module_array_t *modules = req->ctx->modules;
for (size_t i = 0; i < modules->len; ++i) {
struct kr_module *mod = modules->at[i];
if (mod->layer && mod->layer(mod) == api) {
return i;
}
}
return 0; /* Not found, try all. */
}
/* @internal We don't need to deal with locale here */
KR_CONST static inline bool isletter(unsigned chr)
{ return (chr | 0x20 /* tolower */) - 'a' <= 'z' - 'a'; }
/* Randomize QNAME letter case.
* This adds 32 bits of randomness at maximum, but that's more than an average domain name length.
* https://tools.ietf.org/html/draft-vixie-dnsext-dns0x20-00
*/
static void randomized_qname_case(knot_dname_t * restrict qname, uint32_t secret)
assert(qname);
const int len = knot_dname_size(qname) - 2; /* Skip first, last label. */
for (int i = 0; i < len; ++i) {
if (isletter(*++qname)) {
*qname ^= ((secret >> (i & 31)) & 1) * 0x20;
/** Invalidate current NS/addr pair. */
static int invalidate_ns(struct kr_rplan *rplan, struct kr_query *qry)
if (qry->ns.addr[0].ip.sa_family != AF_UNSPEC) {
uint8_t *addr = kr_nsrep_inaddr(qry->ns.addr[0]);
size_t addr_len = kr_nsrep_inaddr_len(qry->ns.addr[0]);
/* @warning _NOT_ thread-safe */
static knot_rdata_t rdata_arr[RDATA_ARR_MAX];
knot_rdata_init(rdata_arr, addr_len, addr, 0);
return kr_zonecut_del(&qry->zone_cut, qry->ns.name, rdata_arr);
} else {
return kr_zonecut_del(&qry->zone_cut, qry->ns.name, NULL);
}
/** This turns of QNAME minimisation if there is a non-terminal between current zone cut, and name target.
* It save several minimization steps, as the zone cut is likely final one.
*/
static void check_empty_nonterms(struct kr_query *qry, knot_pkt_t *pkt, struct kr_cache *cache, uint32_t timestamp)
{
if (qry->flags & QUERY_NO_MINIMIZE) {
return;
}
const knot_dname_t *target = qry->sname;
const knot_dname_t *cut_name = qry->zone_cut.name;
if (!target || !cut_name)
return;
struct kr_cache_entry *entry = NULL;
/* @note: The non-terminal must be direct child of zone cut (e.g. label distance <= 2),
* otherwise this would risk leaking information to parent if the NODATA TTD > zone cut TTD. */
int labels = knot_dname_labels(target, NULL) - knot_dname_labels(cut_name, NULL);
while (target[0] && labels > 2) {
target = knot_wire_next_label(target, NULL);
--labels;
for (int i = 0; i < labels; ++i) {
int ret = kr_cache_peek(cache, KR_CACHE_PKT, target, KNOT_RRTYPE_NS, &entry, ×tamp);
if (ret == 0) { /* Either NXDOMAIN or NODATA, start here. */
/* @todo We could stop resolution here for NXDOMAIN, but we can't because of broken CDNs */
qry->flags |= QUERY_NO_MINIMIZE;
kr_make_query(qry, pkt);
return;
}
target = knot_wire_next_label(target, NULL);
}
}
static int ns_fetch_cut(struct kr_query *qry, struct kr_request *req, knot_pkt_t *pkt)
/* Find closest zone cut from cache */
struct kr_cache *cache = &req->ctx->cache;
if (kr_cache_is_open(cache)) {
/* If at/subdomain of parent zone cut, start from its encloser.
* This is for case when we get to a dead end (and need glue from parent), or DS refetch. */
struct kr_query *parent = qry->parent;
bool secured = (qry->flags & QUERY_DNSSEC_WANT);
if (parent && parent->zone_cut.name[0] != '\0' && knot_dname_in(parent->zone_cut.name, qry->sname)) {
const knot_dname_t *encloser = knot_wire_next_label(parent->zone_cut.name, NULL);
ret = kr_zonecut_find_cached(req->ctx, &qry->zone_cut, encloser, qry->timestamp.tv_sec, &secured);
ret = kr_zonecut_find_cached(req->ctx, &qry->zone_cut, qry->sname, qry->timestamp.tv_sec, &secured);
/* Check if there's a non-terminal between target and current cut. */
if (ret == 0) {
check_empty_nonterms(qry, pkt, cache, qry->timestamp.tv_sec);
/* Go insecure if the zone cut is provably insecure */
if ((qry->flags & QUERY_DNSSEC_WANT) && !secured) {
DEBUG_MSG(qry, "=> NS is provably without DS, going insecure\n");
qry->flags &= ~QUERY_DNSSEC_WANT;
qry->flags |= QUERY_DNSSEC_INSECURE;
}
} else {
ret = kr_error(ENOENT);
static int ns_resolve_addr(struct kr_query *qry, struct kr_request *param)
struct kr_context *ctx = param->ctx;
/* Start NS queries from root, to avoid certain cases
* where a NS drops out of cache and the rest is unavailable,
* this would lead to dependency loop in current zone cut.
* Prefer IPv6 and continue with IPv4 if not available.
uint16_t next_type = 0;
if (!(qry->flags & QUERY_AWAIT_IPV6)) {
next_type = KNOT_RRTYPE_AAAA;
qry->flags |= QUERY_AWAIT_IPV6;
} else if (!(qry->flags & QUERY_AWAIT_IPV4)) {
next_type = KNOT_RRTYPE_A;
qry->flags |= QUERY_AWAIT_IPV4;
/* Hmm, no useable IPv6 then. */
qry->ns.reputation |= KR_NS_NOIP6;
kr_nsrep_update_rep(&qry->ns, qry->ns.reputation, ctx->cache_rep);
}
/* Bail out if the query is already pending or dependency loop. */
if (!next_type || kr_rplan_satisfies(qry->parent, qry->ns.name, KNOT_CLASS_IN, next_type)) {
/* Fall back to SBELT if root server query fails. */
if (!next_type && qry->zone_cut.name[0] == '\0') {
DEBUG_MSG(qry, "=> fallback to root hints\n");
kr_zonecut_set_sbelt(ctx, &qry->zone_cut);
qry->flags |= QUERY_NO_THROTTLE; /* Pick even bad SBELT servers */
return kr_error(EAGAIN);
}
/* No IPv4 nor IPv6, flag server as unuseable. */
DEBUG_MSG(qry, "=> unresolvable NS address, bailing out\n");
qry->ns.reputation |= KR_NS_NOIP4 | KR_NS_NOIP6;
kr_nsrep_update_rep(&qry->ns, qry->ns.reputation, ctx->cache_rep);
invalidate_ns(rplan, qry);
/* Push new query to the resolution plan */
struct kr_query *next = kr_rplan_push(rplan, qry, qry->ns.name, KNOT_CLASS_IN, next_type);
if (!next) {
return kr_error(ENOMEM);
}
/* At the root level with no NS addresses, add SBELT subrequest. */
int ret = 0;
if (qry->zone_cut.name[0] == '\0') {
ret = kr_zonecut_set_sbelt(ctx, &next->zone_cut);
if (ret == 0) { /* Copy TA and key since it's the same cut to avoid lookup. */
kr_zonecut_copy_trust(&next->zone_cut, &qry->zone_cut);
kr_zonecut_set_sbelt(ctx, &qry->zone_cut); /* Add SBELT to parent in case query fails. */
qry->flags |= QUERY_NO_THROTTLE; /* Pick even bad SBELT servers */
}
} else {
next->flags |= QUERY_AWAIT_CUT;
}
return ret;
static int edns_put(knot_pkt_t *pkt)
{
if (!pkt->opt_rr) {
return kr_ok();
}
/* Reclaim reserved size. */
int ret = knot_pkt_reclaim(pkt, knot_edns_wire_size(pkt->opt_rr));
if (ret != 0) {
return ret;
}
/* Write to packet. */
assert(pkt->current == KNOT_ADDITIONAL);
return knot_pkt_put(pkt, KNOT_COMPR_HINT_NONE, pkt->opt_rr, KNOT_PF_FREE);
}
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/** Removes last EDNS OPT RR written to the packet. */
static int edns_erase_and_reserve(knot_pkt_t *pkt)
{
/* Nothing to be done. */
if (!pkt || !pkt->opt_rr) {
return 0;
}
/* Fail if the data are located elsewhere than at the end of packet. */
if (pkt->current != KNOT_ADDITIONAL ||
pkt->opt_rr != &pkt->rr[pkt->rrset_count - 1]) {
return -1;
}
size_t len = knot_rrset_size(pkt->opt_rr);
int16_t rr_removed = pkt->opt_rr->rrs.rr_count;
/* Decrease rrset counters. */
pkt->rrset_count -= 1;
pkt->sections[pkt->current].count -= 1;
pkt->size -= len;
knot_wire_add_arcount(pkt->wire, -rr_removed); /* ADDITIONAL */
pkt->opt_rr = NULL;
/* Reserve the freed space. */
return knot_pkt_reserve(pkt, len);
}
static int edns_create(knot_pkt_t *pkt, knot_pkt_t *template, struct kr_request *req)
pkt->opt_rr = knot_rrset_copy(req->ctx->opt_rr, &pkt->mm);
size_t wire_size = knot_edns_wire_size(pkt->opt_rr);
#if defined(ENABLE_COOKIES)
if (req->ctx->cookie_ctx.clnt.enabled ||
req->ctx->cookie_ctx.srvr.enabled) {
wire_size += KR_COOKIE_OPT_MAX_LEN;
}
#endif /* defined(ENABLE_COOKIES) */
return knot_pkt_reserve(pkt, wire_size);
static int answer_prepare(knot_pkt_t *answer, knot_pkt_t *query, struct kr_request *req)
{
if (knot_pkt_init_response(answer, query) != 0) {
return kr_error(ENOMEM); /* Failed to initialize answer */
}
/* Handle EDNS in the query */
if (knot_pkt_has_edns(query)) {
int ret = edns_create(answer, query, req);
if (ret != 0){
return ret;
}
/* Set DO bit if set (DNSSEC requested). */
if (knot_pkt_has_dnssec(query)) {
knot_edns_set_do(answer->opt_rr);
}
}
return kr_ok();
}
static void write_extra_records(rr_array_t *arr, knot_pkt_t *answer)
{
for (size_t i = 0; i < arr->len; ++i) {
knot_pkt_put(answer, 0, arr->at[i], 0);
}
}
static int answer_fail(knot_pkt_t *answer)
{
int ret = kr_pkt_clear_payload(answer);
knot_wire_clear_ad(answer->wire);
knot_wire_clear_aa(answer->wire);
knot_wire_set_rcode(answer->wire, KNOT_RCODE_SERVFAIL);
if (ret == 0 && answer->opt_rr) {
/* OPT in SERVFAIL response is still useful for cookies/additional info. */
knot_pkt_begin(answer, KNOT_ADDITIONAL);
ret = edns_put(answer);
}
return ret;
}
static int answer_finalize(struct kr_request *request, int state)
struct kr_rplan *rplan = &request->rplan;
knot_pkt_t *answer = request->answer;
/* Always set SERVFAIL for bogus answers. */
if (state == KNOT_STATE_FAIL && rplan->pending.len > 0) {
struct kr_query *last = array_tail(rplan->pending);
if ((last->flags & QUERY_DNSSEC_WANT) && (last->flags & QUERY_DNSSEC_BOGUS)) {
return answer_fail(answer);
}
}
/* Write authority records. */
if (answer->current < KNOT_AUTHORITY) {
knot_pkt_begin(answer, KNOT_AUTHORITY);
write_extra_records(&request->authority, answer);
/* Write additional records. */
knot_pkt_begin(answer, KNOT_ADDITIONAL);
write_extra_records(&request->additional, answer);
/* Write EDNS information */
knot_pkt_begin(answer, KNOT_ADDITIONAL);
ret = edns_put(answer);
/* Set AD=1 if succeeded and requested secured answer. */
const bool has_ad = knot_wire_get_ad(answer->wire);
knot_wire_clear_ad(answer->wire);
if (state == KNOT_STATE_DONE && rplan->resolved.len > 0) {
struct kr_query *last = array_tail(rplan->resolved);
/* Do not set AD for RRSIG query, as we can't validate it. */
const bool secure = (last->flags & QUERY_DNSSEC_WANT) &&
!(last->flags & QUERY_DNSSEC_INSECURE);
if (has_ad && secure && knot_pkt_qtype(answer) != KNOT_RRTYPE_RRSIG) {
knot_wire_set_ad(answer->wire);
}
static int query_finalize(struct kr_request *request, struct kr_query *qry, knot_pkt_t *pkt)
knot_pkt_begin(pkt, KNOT_ADDITIONAL);
if (!(qry->flags & QUERY_SAFEMODE)) {
/* Remove any EDNS records from any previous iteration. */
ret = edns_erase_and_reserve(pkt);
if (ret == 0) {
ret = edns_create(pkt, request->answer, request);
}
if (ret == 0) {
/* Stub resolution (ask for +rd and +do) */
if (qry->flags & QUERY_STUB) {
knot_wire_set_rd(pkt->wire);
if (knot_pkt_has_dnssec(request->answer))
knot_edns_set_do(pkt->opt_rr);
/* Full resolution (ask for +cd and +do) */
} else if (qry->flags & QUERY_DNSSEC_WANT) {
knot_edns_set_do(pkt->opt_rr);
knot_wire_set_cd(pkt->wire);
ret = edns_put(pkt);
}
}
return ret;
}
int kr_resolve_begin(struct kr_request *request, struct kr_context *ctx, knot_pkt_t *answer)
{
/* Initialize request */
request->ctx = ctx;
request->answer = answer;
request->options = ctx->options;
request->state = KNOT_STATE_CONSUME;
request->current_query = NULL;
array_init(request->authority);
array_init(request->additional);
kr_rplan_init(&request->rplan, request, &request->pool);
static int resolve_query(struct kr_request *request, const knot_pkt_t *packet)
const knot_dname_t *qname = knot_pkt_qname(packet);
uint16_t qclass = knot_pkt_qclass(packet);
uint16_t qtype = knot_pkt_qtype(packet);
struct kr_query *qry = NULL;
if (qname != NULL) {
qry = kr_rplan_push(rplan, NULL, qname, qclass, qtype);
} else if (knot_wire_get_qdcount(packet->wire) == 0 &&
knot_pkt_has_edns(packet) &&
knot_edns_has_option(packet->opt_rr, KNOT_EDNS_OPTION_COOKIE)) {
/* Plan empty query only for cookies. */
qry = kr_rplan_push_empty(rplan, NULL);
}
/* Deferred zone cut lookup for this query. */
qry->flags |= QUERY_AWAIT_CUT;
/* Want DNSSEC if it's posible to secure this name (e.g. is covered by any TA) */
map_t *negative_anchors = &request->ctx->negative_anchors;
map_t *trust_anchors = &request->ctx->trust_anchors;
if ((knot_wire_get_ad(packet->wire) || knot_pkt_has_dnssec(packet)) &&
kr_ta_covers(trust_anchors, qname) && !kr_ta_covers(negative_anchors, qname)) {
qry->flags |= QUERY_DNSSEC_WANT;
}
/* Initialize answer packet */
knot_pkt_t *answer = request->answer;
knot_wire_set_qr(answer->wire);
knot_wire_clear_aa(answer->wire);
knot_wire_set_ra(answer->wire);
knot_wire_set_rcode(answer->wire, KNOT_RCODE_NOERROR);
if (qry->flags & QUERY_DNSSEC_WANT) {
knot_wire_set_ad(answer->wire);
}
/* Expect answer, pop if satisfied immediately */
request->qsource.packet = packet;
ITERATE_LAYERS(request, qry, begin, request);
request->qsource.packet = NULL;
if (request->state == KNOT_STATE_DONE) {
kr_rplan_pop(rplan, qry);
}
return request->state;
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
KR_PURE static bool kr_inaddr_equal(const struct sockaddr *a, const struct sockaddr *b)
{
const int a_len = kr_inaddr_len(a);
const int b_len = kr_inaddr_len(b);
return a_len == b_len && memcmp(kr_inaddr(a), kr_inaddr(b), a_len) == 0;
}
static void update_nslist_rtt(struct kr_context *ctx, struct kr_query *qry, const struct sockaddr *src)
{
/* Do not track in safe mode. */
if (qry->flags & QUERY_SAFEMODE) {
return;
}
/* Calculate total resolution time from the time the query was generated. */
struct timeval now;
gettimeofday(&now, NULL);
unsigned elapsed = time_diff(&qry->timestamp, &now);
/* NSs in the preference list prior to the one who responded will be penalised
* with the RETRY timer interval. This is because we know they didn't respond
* for N retries, so their RTT must be at least N * RETRY.
* The NS in the preference list that responded will have RTT relative to the
* time when the query was sent out, not when it was originated.
*/
for (size_t i = 0; i < KR_NSREP_MAXADDR; ++i) {
const struct sockaddr *addr = &qry->ns.addr[i].ip;
if (addr->sa_family == AF_UNSPEC) {
break;
}
/* If this address is the source of the answer, update its RTT */
if (kr_inaddr_equal(src, addr)) {
kr_nsrep_update_rtt(&qry->ns, addr, elapsed, ctx->cache_rtt, KR_NS_UPDATE);
WITH_DEBUG {
char addr_str[INET6_ADDRSTRLEN];
inet_ntop(addr->sa_family, kr_inaddr(addr), addr_str, sizeof(addr_str));
DEBUG_MSG(qry, "<= server: '%s' rtt: %ld ms\n", addr_str, elapsed);
}
} else {
/* Response didn't come from this IP, but we know the RTT must be at least
* several RETRY timer tries, e.g. if we have addresses [a, b, c] and we have
* tried [a, b] when the answer from 'a' came after 350ms, then we know
* that 'b' didn't respond for at least 350 - (1 * 300) ms. We can't say that
* its RTT is 50ms, but we can say that its score shouldn't be less than 50. */
kr_nsrep_update_rtt(&qry->ns, addr, elapsed, ctx->cache_rtt, KR_NS_MAX);
WITH_DEBUG {
char addr_str[INET6_ADDRSTRLEN];
inet_ntop(addr->sa_family, kr_inaddr(addr), addr_str, sizeof(addr_str));
DEBUG_MSG(qry, "<= server: '%s' rtt: >=%ld ms\n", addr_str, elapsed);
}
}
/* Subtract query start time from elapsed time */
if (elapsed < KR_CONN_RETRY) {
break;
}
elapsed = elapsed - KR_CONN_RETRY;
}
}
static void update_nslist_score(struct kr_request *request, struct kr_query *qry, const struct sockaddr *src, knot_pkt_t *packet)
{
struct kr_context *ctx = request->ctx;
/* On sucessful answer, update preference list RTT and penalise timer */
if (request->state != KNOT_STATE_FAIL) {
/* Update RTT information for preference list */
update_nslist_rtt(ctx, qry, src);
/* Do not complete NS address resolution on soft-fail. */
const int rcode = packet ? knot_wire_get_rcode(packet->wire) : 0;
if (rcode != KNOT_RCODE_SERVFAIL && rcode != KNOT_RCODE_REFUSED) {
qry->flags &= ~(QUERY_AWAIT_IPV6|QUERY_AWAIT_IPV4);
} else { /* Penalize SERVFAILs. */
kr_nsrep_update_rtt(&qry->ns, src, KR_NS_PENALTY, ctx->cache_rtt, KR_NS_ADD);
}
/* Penalise resolution failures except validation failures. */
} else if (!(qry->flags & QUERY_DNSSEC_BOGUS)) {
kr_nsrep_update_rtt(&qry->ns, src, KR_NS_TIMEOUT, ctx->cache_rtt, KR_NS_RESET);
WITH_DEBUG {
char addr_str[INET6_ADDRSTRLEN];
inet_ntop(src->sa_family, kr_inaddr(src), addr_str, sizeof(addr_str));
DEBUG_MSG(qry, "=> server: '%s' flagged as 'bad'\n", addr_str);
}
}
}
int kr_resolve_consume(struct kr_request *request, const struct sockaddr *src, knot_pkt_t *packet)
if (packet && kr_rplan_empty(rplan)) {
if (answer_prepare(request->answer, packet, request) != 0) {
return KNOT_STATE_FAIL;
}
return resolve_query(request, packet);
struct kr_query *qry = array_tail(rplan->pending);
bool tried_tcp = (qry->flags & QUERY_TCP);
if (!packet || packet->size == 0) {
if (tried_tcp)
request->state = KNOT_STATE_FAIL;
else
qry->flags |= QUERY_TCP;
/* Packet cleared, derandomize QNAME. */
knot_dname_t *qname_raw = (knot_dname_t *)knot_pkt_qname(packet);
if (qname_raw && qry->secret != 0) {
randomized_qname_case(qname_raw, qry->secret);
}
request->state = KNOT_STATE_CONSUME;
if (qry->flags & QUERY_CACHED) {
ITERATE_LAYERS(request, qry, consume, packet);
} else {
struct timeval now;
gettimeofday(&now, NULL);
/* Fill in source and latency information. */
request->upstream.rtt = time_diff(&qry->timestamp, &now);
request->upstream.addr = src;
ITERATE_LAYERS(request, qry, consume, packet);
/* Clear temporary information */
request->upstream.addr = NULL;
request->upstream.rtt = 0;
}
/* Track RTT for iterative answers */
if (src && !(qry->flags & QUERY_CACHED)) {
update_nslist_score(request, qry, src, packet);
}
/* Resolution failed, invalidate current NS. */
if (request->state == KNOT_STATE_FAIL) {
invalidate_ns(rplan, qry);
qry->flags &= ~QUERY_RESOLVED;
if (request->state == KNOT_STATE_YIELD) {
return KNOT_STATE_PRODUCE; /* Requery */
} else if (qry->flags & QUERY_RESOLVED) {
} else if (!tried_tcp && (qry->flags & QUERY_TCP)) {
return KNOT_STATE_PRODUCE; /* Requery over TCP */
} else { /* Clear query flags for next attempt */
ITERATE_LAYERS(request, qry, reset);
/* Do not finish with bogus answer. */
if (qry->flags & QUERY_DNSSEC_BOGUS) {
return KNOT_STATE_FAIL;
}
return kr_rplan_empty(&request->rplan) ? KNOT_STATE_DONE : KNOT_STATE_PRODUCE;
/** @internal Spawn subrequest in current zone cut (no minimization or lookup). */
static struct kr_query *zone_cut_subreq(struct kr_rplan *rplan, struct kr_query *parent,
const knot_dname_t *qname, uint16_t qtype)
struct kr_query *next = kr_rplan_push(rplan, parent, qname, parent->sclass, qtype);
if (!next) {
kr_zonecut_set(&next->zone_cut, parent->zone_cut.name);
if (kr_zonecut_copy(&next->zone_cut, &parent->zone_cut) != 0 ||
kr_zonecut_copy_trust(&next->zone_cut, &parent->zone_cut) != 0) {
next->flags |= QUERY_NO_MINIMIZE;
if (parent->flags & QUERY_DNSSEC_WANT) {
next->flags |= QUERY_DNSSEC_WANT;
}
/* @todo: Validator refactoring, keep this in driver for now. */
static int trust_chain_check(struct kr_request *request, struct kr_query *qry)
{
struct kr_rplan *rplan = &request->rplan;
map_t *trust_anchors = &request->ctx->trust_anchors;
map_t *negative_anchors = &request->ctx->negative_anchors;
/* Disable DNSSEC if it enters NTA. */
if (kr_ta_get(negative_anchors, qry->zone_cut.name)){
DEBUG_MSG(qry, ">< negative TA, going insecure\n");
/* Enable DNSSEC if enters a new island of trust. */
bool want_secured = (qry->flags & QUERY_DNSSEC_WANT);
if (!want_secured && kr_ta_get(trust_anchors, qry->zone_cut.name)) {
qry->flags |= QUERY_DNSSEC_WANT;
want_secured = true;
WITH_DEBUG {
char qname_str[KNOT_DNAME_MAXLEN];
knot_dname_to_str(qname_str, qry->zone_cut.name, sizeof(qname_str));
DEBUG_MSG(qry, ">< TA: '%s'\n", qname_str);
}
}
if (want_secured && !qry->zone_cut.trust_anchor) {
knot_rrset_t *ta_rr = kr_ta_get(trust_anchors, qry->zone_cut.name);
qry->zone_cut.trust_anchor = knot_rrset_copy(ta_rr, qry->zone_cut.pool);
/* Try to fetch missing DS (from above the cut). */
const bool has_ta = (qry->zone_cut.trust_anchor != NULL);
const knot_dname_t *ta_name = (has_ta ? qry->zone_cut.trust_anchor->owner : NULL);
const bool refetch_ta = !has_ta || !knot_dname_is_equal(qry->zone_cut.name, ta_name);
if (want_secured && refetch_ta) {
/* @todo we could fetch the information from the parent cut, but we don't remember that now */
struct kr_query *next = kr_rplan_push(rplan, qry, qry->zone_cut.name, qry->sclass, KNOT_RRTYPE_DS);
if (!next) {
return KNOT_STATE_FAIL;
}
next->flags |= QUERY_AWAIT_CUT|QUERY_DNSSEC_WANT;
/* Try to fetch missing DNSKEY (either missing or above current cut).
* Do not fetch if this is a DNSKEY subrequest to avoid circular dependency. */
const bool is_dnskey_subreq = kr_rplan_satisfies(qry, ta_name, KNOT_CLASS_IN, KNOT_RRTYPE_DNSKEY);
const bool refetch_key = has_ta && (!qry->zone_cut.key || !knot_dname_is_equal(ta_name, qry->zone_cut.key->owner));
if (want_secured && refetch_key && !is_dnskey_subreq) {
struct kr_query *next = zone_cut_subreq(rplan, qry, ta_name, KNOT_RRTYPE_DNSKEY);
return KNOT_STATE_FAIL;
}
return KNOT_STATE_DONE;
}
return KNOT_STATE_PRODUCE;
}
/** @internal Check current zone cut status and credibility, spawn subrequests if needed. */
static int zone_cut_check(struct kr_request *request, struct kr_query *qry, knot_pkt_t *packet)
{
map_t *trust_anchors = &request->ctx->trust_anchors;
map_t *negative_anchors = &request->ctx->negative_anchors;
/* Stub mode, just forward and do not solve cut. */
if (qry->flags & QUERY_STUB) {
return KNOT_STATE_PRODUCE;
}
/* The query wasn't resolved from cache,
* now it's the time to look up closest zone cut from cache. */
if (qry->flags & QUERY_AWAIT_CUT) {
/* Want DNSSEC if it's posible to secure this name (e.g. is covered by any TA) */
if (!kr_ta_covers(negative_anchors, qry->zone_cut.name) &&
kr_ta_covers(trust_anchors, qry->zone_cut.name)) {
qry->flags |= QUERY_DNSSEC_WANT;
} else {
qry->flags &= ~QUERY_DNSSEC_WANT;
}
int ret = ns_fetch_cut(qry, request, packet);
if (ret != 0) {
/* No cached cut found, start from SBELT and issue priming query. */
if (ret == kr_error(ENOENT)) {
ret = kr_zonecut_set_sbelt(request->ctx, &qry->zone_cut);
if (ret != 0) {
return KNOT_STATE_FAIL;
}
DEBUG_MSG(qry, "=> using root hints\n");
qry->flags &= ~QUERY_AWAIT_CUT;
return KNOT_STATE_DONE;
} else {
return KNOT_STATE_FAIL;
}
}
/* Update minimized QNAME if zone cut changed */
if (qry->zone_cut.name[0] != '\0' && !(qry->flags & QUERY_NO_MINIMIZE)) {
if (kr_make_query(qry, packet) != 0) {
return KNOT_STATE_FAIL;
}
}
qry->flags &= ~QUERY_AWAIT_CUT;
}
/* Check trust chain */
return trust_chain_check(request, qry);
}
int kr_resolve_produce(struct kr_request *request, struct sockaddr **dst, int *type, knot_pkt_t *packet)
{
struct kr_rplan *rplan = &request->rplan;
unsigned ns_election_iter = 0;
/* No query left for resolution */
if (kr_rplan_empty(rplan)) {
return KNOT_STATE_FAIL;
}
/* If we have deferred answers, resume them. */
struct kr_query *qry = array_tail(rplan->pending);
if (qry->deferred != NULL) {
/* @todo: Refactoring validator, check trust chain before resuming. */
switch(trust_chain_check(request, qry)) {
case KNOT_STATE_FAIL: return KNOT_STATE_FAIL;
case KNOT_STATE_DONE: return KNOT_STATE_PRODUCE;
default: break;
}
DEBUG_MSG(qry, "=> resuming yielded answer\n");
struct kr_layer_pickle *pickle = qry->deferred;
request->state = KNOT_STATE_YIELD;
RESUME_LAYERS(layer_id(request, pickle->api), request, qry, consume, pickle->pkt);
qry->deferred = pickle->next;
} else {
/* Caller is interested in always tracking a zone cut, even if the answer is cached
* this is normally not required, and incurrs another cache lookups for cached answer. */
if (qry->flags & QUERY_ALWAYS_CUT) {
switch(zone_cut_check(request, qry, packet)) {
case KNOT_STATE_FAIL: return KNOT_STATE_FAIL;
case KNOT_STATE_DONE: return KNOT_STATE_PRODUCE;
default: break;
}
}
/* Resolve current query and produce dependent or finish */
request->state = KNOT_STATE_PRODUCE;
ITERATE_LAYERS(request, qry, produce, packet);
if (request->state != KNOT_STATE_FAIL && knot_wire_get_qr(packet->wire)) {
/* Produced an answer, consume it. */
qry->secret = 0;
request->state = KNOT_STATE_CONSUME;
ITERATE_LAYERS(request, qry, consume, packet);
}
}
switch(request->state) {
case KNOT_STATE_FAIL: return request->state;
case KNOT_STATE_CONSUME: break;
case KNOT_STATE_DONE:
default: /* Current query is done */
if (qry->flags & QUERY_RESOLVED && request->state != KNOT_STATE_YIELD) {
ITERATE_LAYERS(request, qry, reset);
return kr_rplan_empty(rplan) ? KNOT_STATE_DONE : KNOT_STATE_PRODUCE;
/* This query has RD=0 or is ANY, stop here. */
if (qry->stype == KNOT_RRTYPE_ANY || !knot_wire_get_rd(request->answer->wire)) {
DEBUG_MSG(qry, "=> qtype is ANY or RD=0, bail out\n");
return KNOT_STATE_FAIL;
}
/* Update zone cut, spawn new subrequests. */
if (!(qry->flags & QUERY_STUB)) {
int state = zone_cut_check(request, qry, packet);
switch(state) {
case KNOT_STATE_FAIL: return KNOT_STATE_FAIL;
case KNOT_STATE_DONE: return KNOT_STATE_PRODUCE;
default: break;
}
/* If the query has got REFUSED & SERVFAIL, retry with current src up to KR_QUERY_NSRETRY_LIMIT.
* If the query has already selected a NS and is waiting for IPv4/IPv6 record,
* elect best address only, otherwise elect a completely new NS.
*/
if(++ns_election_iter >= KR_ITER_LIMIT) {
DEBUG_MSG(qry, "=> couldn't converge NS selection, bail out\n");
return KNOT_STATE_FAIL;
}
const bool retry = (qry->flags & (QUERY_TCP|QUERY_STUB|QUERY_BADCOOKIE_AGAIN));
if (qry->flags & (QUERY_AWAIT_IPV4|QUERY_AWAIT_IPV6)) {
kr_nsrep_elect_addr(qry, request->ctx);
} else if (!qry->ns.name || !retry) { /* Keep NS when requerying/stub/badcookie. */
/* Root DNSKEY must be fetched from the hints to avoid chicken and egg problem. */
if (qry->sname[0] == '\0' && qry->stype == KNOT_RRTYPE_DNSKEY) {
kr_zonecut_set_sbelt(request->ctx, &qry->zone_cut);
qry->flags |= QUERY_NO_THROTTLE; /* Pick even bad SBELT servers */
kr_nsrep_elect(qry, request->ctx);
if (qry->ns.score > KR_NS_MAX_SCORE) {
DEBUG_MSG(qry, "=> no valid NS left\n");
ITERATE_LAYERS(request, qry, reset);
kr_rplan_pop(rplan, qry);
}
}
/* Resolve address records */
if (qry->ns.addr[0].ip.sa_family == AF_UNSPEC) {
int ret = ns_resolve_addr(qry, request);
if (ret != 0) {
qry->flags &= ~(QUERY_AWAIT_IPV6|QUERY_AWAIT_IPV4|QUERY_TCP);
goto ns_election; /* Must try different NS */
ITERATE_LAYERS(request, qry, reset);
return KNOT_STATE_PRODUCE;
/* Randomize query case (if not in safemode) */
qry->secret = (qry->flags & QUERY_SAFEMODE) ? 0 : kr_rand_uint(UINT32_MAX);
knot_dname_t *qname_raw = (knot_dname_t *)knot_pkt_qname(packet);
randomized_qname_case(qname_raw, qry->secret);
/*
* Additional query is going to be finalised when calling
* kr_resolve_checkout().
*/
gettimeofday(&qry->timestamp, NULL);
*dst = &qry->ns.addr[0].ip;
*type = (qry->flags & QUERY_TCP) ? SOCK_STREAM : SOCK_DGRAM;
return request->state;
}
#if defined(ENABLE_COOKIES)
/** Update DNS cookie data in packet. */
static bool outbound_request_update_cookies(struct kr_request *req,
const struct sockaddr *src,
const struct sockaddr *dst)
{
assert(req);
/* RFC7873 4.1 strongly requires server address. */
if (!dst) {
return false;
}
struct kr_cookie_settings *clnt_sett = &req->ctx->cookie_ctx.clnt;
/* Cookies disabled or packet has no EDNS section. */
if (!clnt_sett->enabled) {
return true;
}
/*
* RFC7873 4.1 recommends using also the client address. The matter is
* also discussed in section 6.
*/
kr_request_put_cookie(&clnt_sett->current, req->ctx->cache_cookie,
return true;
}
#endif /* defined(ENABLE_COOKIES) */
int kr_resolve_checkout(struct kr_request *request, struct sockaddr *src,
struct sockaddr *dst, int type, knot_pkt_t *packet)
{
/* @todo: Update documentation if this function becomes approved. */
struct kr_rplan *rplan = &request->rplan;
if (knot_wire_get_qr(packet->wire) != 0) {
}
/* No query left for resolution */
if (kr_rplan_empty(rplan)) {
return kr_error(EINVAL);
}
struct kr_query *qry = array_tail(rplan->pending);
#if defined(ENABLE_COOKIES)
/* Update DNS cookies in request. */
if (type == SOCK_DGRAM) { /* @todo: Add cookies also over TCP? */
/*
* The actual server IP address is needed before generating the
* actual cookie. If we don't know the server address then we
* also don't know the actual cookie size.
if (!outbound_request_update_cookies(request, src, dst)) {
return kr_error(EINVAL);
}
}
#endif /* defined(ENABLE_COOKIES) */
int ret = query_finalize(request, qry, packet);
if (ret != 0) {
return kr_error(EINVAL);
WITH_DEBUG {
char qname_str[KNOT_DNAME_MAXLEN], zonecut_str[KNOT_DNAME_MAXLEN], ns_str[INET6_ADDRSTRLEN], type_str[16];
knot_dname_to_str(qname_str, knot_pkt_qname(packet), sizeof(qname_str));
knot_dname_to_str(zonecut_str, qry->zone_cut.name, sizeof(zonecut_str));
knot_rrtype_to_string(knot_pkt_qtype(packet), type_str, sizeof(type_str));
for (size_t i = 0; i < KR_NSREP_MAXADDR; ++i) {
struct sockaddr *addr = &qry->ns.addr[i].ip;
if (addr->sa_family == AF_UNSPEC) {
break;
}
inet_ntop(addr->sa_family, kr_nsrep_inaddr(qry->ns.addr[i]), ns_str, sizeof(ns_str));
DEBUG_MSG(qry, "%s: '%s' score: %u zone cut: '%s' m12n: '%s' type: '%s' proto: '%s'\n",
i == 0 ? "=>" : " ",
kr_inaddr_equal(dst, addr) ? "*querying" : " optional",
ns_str, qry->ns.score, zonecut_str, qname_str, type_str, (qry->flags & QUERY_TCP)?"tcp":"udp");
}
int kr_resolve_finish(struct kr_request *request, int state)
{
#ifndef NDEBUG
if (answer_finalize(request, state) != 0) {
state = KNOT_STATE_FAIL;
}
/* Error during procesing, internal failure */
if (state != KNOT_STATE_DONE) {